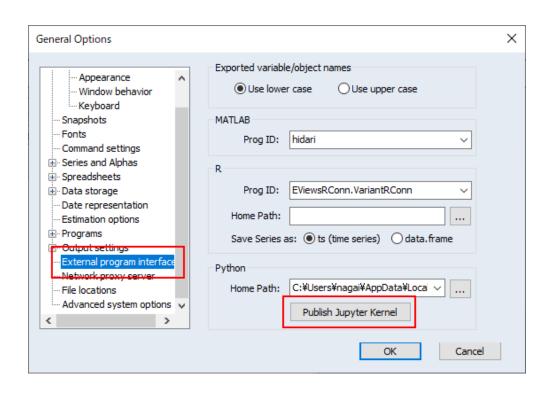
Jupyter Notebook で EViews を使用する

Jupyter Notebook は実行可能なコード、図表、数学の方程式、説明文、単体のドキュメント (notebook) にあるリッチメディア、を結合し、インタラクティブに計算・開発を進めることのできる、強力で簡単に使える WEB アプリケーションです。Jupyter Notebook は、コラボレーションやイノベーションを実現するために、アイデアや研究結果を共有するツールとして研究者や科学者の間で広く使用されています。

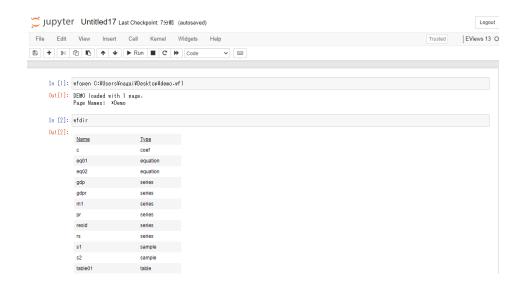

EViews13 では、Jupyter カーネルとして利用できるようになり、Jupyter Notebook 上で EViews プログラム・コマンドを作成・実行して、結果を Notebook 内で確認したり、編集してレポート作成したり出来ます。

システム要件

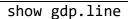
- EViews 13 エンタープライズエディション
- Python 2.7, 3.4 以上

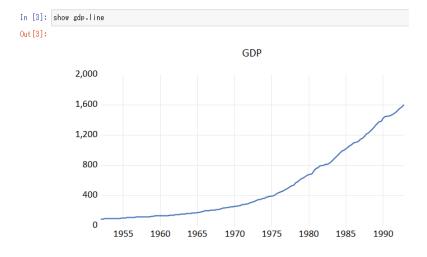
1. EViews カーネルの呼び出し

Jupyter Notebook 上で EViews カーネルを呼び出すには、まず EViews を起動します。メインメニューで Option > General Options と操作し、オプション設定ダイアログボックスを表示します。ダイアログボックス左側の External program interface を選択し、右側の Python 欄で Publish Jupyter Kernel ボタンをクリックします。



Anaconda などから Jupyter Notebook を起動し、New > EViews 13 と選択して EViews カーネルを起動します。

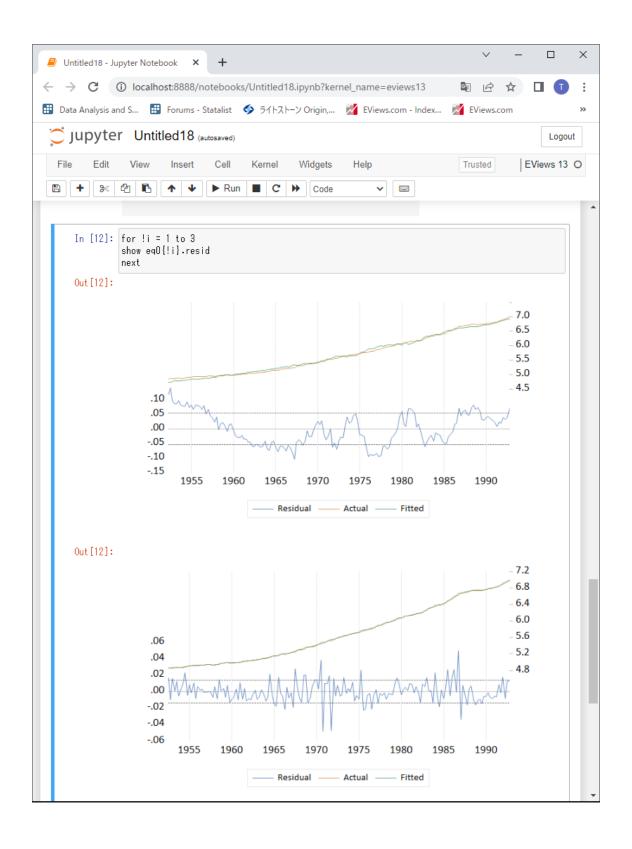

新規ページが開いたら、EViews のコマンドを入力して操作ができるようになります。ここではデスクトップに配置した demo.wf1 サンプルファイルを、wfopenコマンドで開き、次に wfdir でファイル内のオブジェクトを確認しましょう。


wfopen C:¥Users¥ユーザ名¥Desktop¥demo.wf1 wfdir

2. グラフ作成とモデル推定

まずは、show コマンドで GDP 系列の折れ線グラフを表示します。

equation コマンドで次のようなモデル(1)を作成・推定し、結果を表示します。


$$\log GDP = \alpha + \beta_1 \log M1 + \epsilon \tag{1}$$

equation eq03.ls log(gdp) c log(m1)
show eq03.results

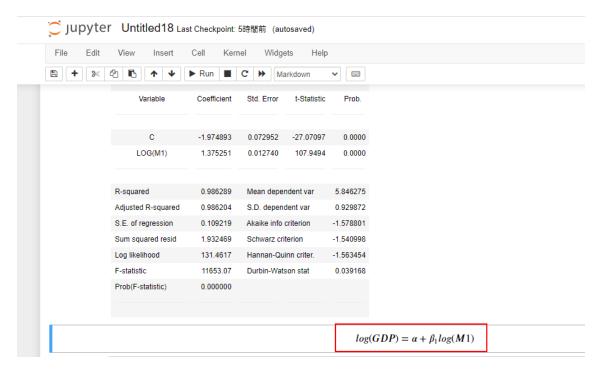
In [4]:	equation eqO3.ls log(gdp) c log(pr) show eqO3.results				
Out [4]:					
040[1]	Dependent Variable: LOG(GDP)				
	Method: Least Squares				
	Date: 03/06/23 Time: 17:57 Sample: 1952Q1 1992Q4				
	Included observations: 164				
	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	С	7.406149	0.017378	426.1765	0.0000
	LOG(PR)	1.677911	0.016100	104.2154	0.0000
	R-squared	0.985303	Mean dependent var		5.846275
	Adjusted R-squared	0.985213	S.D. dependent var		0.929872
	S.E. of regression	0.113076	Akaike info criterion		-1.509395
	Sum squared resid	2.071357	Schwarz criterion		-1.471592
	Log likelihood	125.7704	Hannan-Quinn criter.		-1.494048
	F-statistic	10860.85	Durbin-Watson stat		0.012121
	Prob(F-statistic)	0.000000			

for 文を利用して、ループ処理を行うことも可能です。ここでは、モデルオブジェクト eq01, eq02, eq03 の残差と予測値・実測値のグラフを順次表示させます。

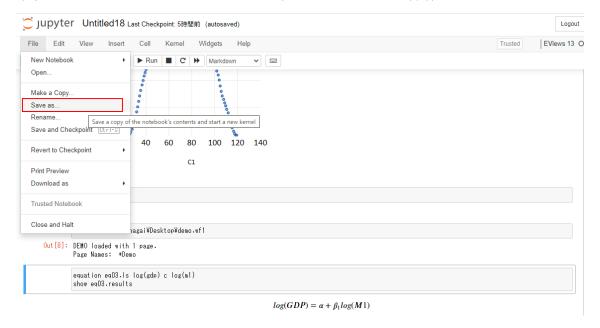
for !i = 1 to 3
 show eq0{!i}.resid
next

3. Notebook の編集

Markdown 形式でタイトル等を追加してレポートとしての体裁を整えることもできます。入力形式を EViews のコマンドから Markdown に変更するには、ドロップダウンメニューで Markdown を選択します。



Markdown では、「#」で見出しを付けることができます。ここでは次のように入力して、タイトルを設定します。



\$\$で囲み、数式を入力することも可能です。ここでは、前述のモデル(1)を次のように入力して、Notebook 内に書き込みます。

```
$$
log(GDP) = \text{\text{$Yalpha} + \text{\text{$Ybeta_1 (M1)}}}
$$
```


最後に、Files > Save as ...と選択してファイルを保存します。

参考文献

IHS EViews. (2022, August 18). *Jupyter Integration in EViews* [Video]. YouTube. https://www.youtube.com/watch?v=YPQFi8xTe1Y